Saturday, January 9, 2021
Saturday, January 2, 2021
An Interactive Semi Automatic Image 2D Bounding Box Annotation/Labelling Tool
https://github.com/robertarvind/Interactive-Semi-Automatic-Image-2D-Bounding-Box-Annotation-Tool-using-Multi-Template_Matching
An Interactive Semi Automatic Image 2D Bounding Box Annotation/Labelling Tool to aid the Annotater/User to rapidly create 2D Bounding Box Single Object Detection masks for large number of training images in a semi automatic manner in order to train an object detection deep neural network such as Mask R-CNN or U-Net. As the Annotater/User starts annotating/labelling by drawing a bounding box for a few number of images in the selected folder then the algorithm suggests bounding box predictions for the rest of the yet to be annotated/labelled images in the folder. If the predictions are right then the user/annotater can simply press the keyboard key 'y' which indicates that the detected bounding box is correct. If the prediction is wrong then the user/annotater can manually draw a rectangular 2D bounding box over the correct ROI (Region of interest) in the image and then press the key 'y' to proceed further to the rest of the images in the folder. If the user/annotater made a mistake while drawing the 2D bounding box, then he/she can press the key 'n' in order to remove the incorrectly marked 2D bounding box and he/she can repeat the process for the same image until he/she draws the correct 2D bounding box and then after drawing the correct 2D bounding box, the user/annotater may press the key 'y' to continue to the rest of the images. The 2D bounding box prediction over the whole image data set improves as the user/annotater annotates/labels more number of images by drawing 2D bounding boxes. This tool allows the user/annotater to not only interactively and rapidly annotate large number of images but also to validate the predictions at the same time interactively. This tool helps the user/annotater to save a lot of time when annotating/labelling and validating the predictions for a large number of training images in a folder.